Achim, K., Pettit, J.-B., Saraiva, L. R., Gavriouchkina, D., Larsson, T., Arendt, D., & Marioni, J. C. (2015). High-throughput spatial mapping of single-cell
RNA-seq data to tissue of origin.
Nature Biotechnology,
33(5), 503–509.
https://doi.org/10.1038/nbt.3209
Ahmad, R., & Budnik, B. (2023). A review of the current state of single-cell proteomics and future perspective.
Analytical and Bioanalytical Chemistry,
415(28), 6889–6899.
https://doi.org/10.1007/s00216-023-04759-8
Aibar, S., González-Blas, C. B., Moerman, T., Huynh-Thu, V. A., Imrichova, H., Hulselmans, G., Rambow, F., Marine, J.-C., Geurts, P., Aerts, J., Van Den Oord, J., Atak, Z. K., Wouters, J., & Aerts, S. (2017).
SCENIC: Single-cell regulatory network inference and clustering.
Nature Methods,
14(11), 1083–1086.
https://doi.org/10.1038/nmeth.4463
Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data.
Genome Biology,
11(10), R106.
https://doi.org/10.1186/gb-2010-11-10-r106
Anders, S., Pyl, P. T., & Huber, W. (2015).
HTSeq—a
Python framework to work with high-throughput sequencing data.
Bioinformatics,
31(2), 166–169.
https://doi.org/10.1093/bioinformatics/btu638
Armand, E. J., Li, J., Xie, F., Luo, C., & Mukamel, E. A. (2021). Single-
Cell Sequencing of
Brain Cell Transcriptomes and
Epigenomes.
Neuron,
109(1), 11–26.
https://doi.org/10.1016/j.neuron.2020.12.010
Beine, Z., Wang, Z., Tsoulfas, P., & Blackmore, M. G. (2022). Single
Nuclei Analyses Reveal Transcriptional Profiles and
Marker Genes for
Diverse Supraspinal Populations.
The Journal of Neuroscience,
42(47), 8780–8794.
https://doi.org/10.1523/JNEUROSCI.1197-22.2022
Bengtsson, M., Hemberg, M., Rorsman, P., & Ståhlberg, A. (2008). Quantification of
mRNA in single cells and modelling of
RT-qPCR induced noise.
BMC Molecular Biology,
9(1), 63.
https://doi.org/10.1186/1471-2199-9-63
Blekhman, R., Oshlack, A., Chabot, A. E., Smyth, G. K., & Gilad, Y. (2008). Gene
Regulation in
Primates Evolves under
Tissue-Specific Selection Pressures.
PLoS Genetics,
4(11), e1000271.
https://doi.org/10.1371/journal.pgen.1000271
Bravo González-Blas, C., De Winter, S., Hulselmans, G., Hecker, N., Matetovici, I., Christiaens, V., Poovathingal, S., Wouters, J., Aibar, S., & Aerts, S. (2023).
SCENIC+: Single-cell multiomic inference of enhancers and gene regulatory networks.
Nature Methods,
20(9), 1355–1367.
https://doi.org/10.1038/s41592-023-01938-4
Brennecke, P., Anders, S., Kim, J. K., Kołodziejczyk, A. A., Zhang, X., Proserpio, V., Baying, B., Benes, V., Teichmann, S. A., Marioni, J. C., & Heisler, M. G. (2013). Accounting for technical noise in single-cell
RNA-seq experiments.
Nature Methods,
10(11), 1093–1095.
https://doi.org/10.1038/nmeth.2645
Calvo-Rodriguez, M., & Bacskai, B. J. (2021). Mitochondria and
Calcium in
Alzheimer’s
Disease:
From Cell Signaling to
Neuronal Cell Death.
Trends in Neurosciences,
44(2), 136–151.
https://doi.org/10.1016/j.tins.2020.10.004
Cebrian-Silla, A., Nascimento, M. A., Redmond, S. A., Mansky, B., Wu, D., Obernier, K., Romero Rodriguez, R., Gonzalez-Granero, S., García-Verdugo, J. M., Lim, D. A., & Álvarez-Buylla, A. (2021). Single-cell analysis of the ventricular-subventricular zone reveals signatures of dorsal and ventral adult neurogenesis.
eLife,
10, e67436.
https://doi.org/10.7554/eLife.67436
Cook, S. J., Jarrell, T. A., Brittin, C. A., Wang, Y., Bloniarz, A. E., Yakovlev, M. A., Nguyen, K. C. Q., Tang, L. T.-H., Bayer, E. A., Duerr, J. S., Bülow, H. E., Hobert, O., Hall, D. H., & Emmons, S. W. (2019). Whole-animal connectomes of both
Caenorhabditis elegans sexes.
Nature,
571(7763), 63–71.
https://doi.org/10.1038/s41586-019-1352-7
Davie, K., Janssens, J., Koldere, D., De Waegeneer, M., Pech, U., Kreft, Ł., Aibar, S., Makhzami, S., Christiaens, V., Bravo González-Blas, C., Poovathingal, S., Hulselmans, G., Spanier, K. I., Moerman, T., Vanspauwen, B., Geurs, S., Voet, T., Lammertyn, J., Thienpont, B., … Aerts, S. (2018). A
Single-Cell Transcriptome Atlas of the
Aging Drosophila Brain.
Cell,
174(4), 982–998.e20.
https://doi.org/10.1016/j.cell.2018.05.057
Dillman, A. A., & Cookson, M. R. (2014). Transcriptomic
Changes in
Brain Development. In
International Review of Neurobiology (Vol. 116, pp. 233–250). Elsevier.
https://doi.org/10.1016/B978-0-12-801105-8.00009-6
Ding, B., Zheng, L., Zhu, Y., Li, N., Jia, H., Ai, R., Wildberg, A., & Wang, W. (2015). Normalization and noise reduction for single cell
RNA-seq experiments.
Bioinformatics,
31(13), 2225–2227.
https://doi.org/10.1093/bioinformatics/btv122
Durruthy-Durruthy, R., Gottlieb, A., Hartman, B. H., Waldhaus, J., Laske, R. D., Altman, R., & Heller, S. (2014). Reconstruction of the
Mouse Otocyst and
Early Neuroblast Lineage at
Single-Cell Resolution.
Cell,
157(4), 964–978.
https://doi.org/10.1016/j.cell.2014.03.036
Eng, C.-H. L., Lawson, M., Zhu, Q., Dries, R., Koulena, N., Takei, Y., Yun, J., Cronin, C., Karp, C., Yuan, G.-C., & Cai, L. (2019). Transcriptome-scale super-resolved imaging in tissues by
RNA seqFISH+.
Nature,
568(7751), 235–239.
https://doi.org/10.1038/s41586-019-1049-y
Fan, H. C., Fu, G. K., & Fodor, S. P. A. (2015). Combinatorial labeling of single cells for gene expression cytometry.
Science,
347(6222), 1258367.
https://doi.org/10.1126/science.1258367
Femino, A. M., Fay, F. S., Fogarty, K., & Singer, R. H. (1998). Visualization of
Single RNA Transcripts in
Situ.
Science,
280(5363), 585–590.
https://doi.org/10.1126/science.280.5363.585
Feng, H., Moakley, D. F., Chen, S., McKenzie, M. G., Menon, V., & Zhang, C. (2021). Complexity and graded regulation of neuronal cell-type–specific alternative splicing revealed by single-cell
RNA sequencing.
Proceedings of the National Academy of Sciences,
118(10), e2013056118.
https://doi.org/10.1073/pnas.2013056118
Frumkin, D., Wasserstrom, A., Itzkovitz, S., Harmelin, A., Rechavi, G., & Shapiro, E. (2008). Amplification of multiple genomic loci from single cells isolated by laser micro-dissection of tissues.
BMC Biotechnology,
8(1), 17.
https://doi.org/10.1186/1472-6750-8-17
Fu, G. K., Hu, J., Wang, P.-H., & Fodor, S. P. A. (2011). Counting individual
DNA molecules by the stochastic attachment of diverse labels.
Proceedings of the National Academy of Sciences,
108(22), 9026–9031.
https://doi.org/10.1073/pnas.1017621108
Grange, P., Bohland, J. W., Okaty, B. W., Sugino, K., Bokil, H., Nelson, S. B., Ng, L., Hawrylycz, M., & Mitra, P. P. (2014). Cell-type–based model explaining coexpression patterns of genes in the brain.
Proceedings of the National Academy of Sciences,
111(14), 5397–5402.
https://doi.org/10.1073/pnas.1312098111
Grindberg, R. V., Yee-Greenbaum, J. L., McConnell, M. J., Novotny, M., O’Shaughnessy, A. L., Lambert, G. M., Araúzo-Bravo, M. J., Lee, J., Fishman, M., Robbins, G. E., Lin, X., Venepally, P., Badger, J. H., Galbraith, D. W., Gage, F. H., & Lasken, R. S. (2013).
RNA-sequencing from single nuclei.
Proceedings of the National Academy of Sciences,
110(49), 19802–19807.
https://doi.org/10.1073/pnas.1319700110
Gulati, G. S., Sikandar, S. S., Wesche, D. J., Manjunath, A., Bharadwaj, A., Berger, M. J., Ilagan, F., Kuo, A. H., Hsieh, R. W., Cai, S., Zabala, M., Scheeren, F. A., Lobo, N. A., Qian, D., Yu, F. B., Dirbas, F. M., Clarke, M. F., & Newman, A. M. (2020). Single-cell transcriptional diversity is a hallmark of developmental potential.
Science,
367(6476), 405–411.
https://doi.org/10.1126/science.aax0249
Hafemeister, C., & Satija, R. (2019). Normalization and variance stabilization of single-cell
RNA-seq data using regularized negative binomial regression.
Genome Biology,
20(1), 296.
https://doi.org/10.1186/s13059-019-1874-1
Hara, M. R., & Snyder, S. H. (2007). Cell
Signaling and
Neuronal Death.
Annual Review of Pharmacology and Toxicology,
47(1), 117–141.
https://doi.org/10.1146/annurev.pharmtox.47.120505.105311
Hayashi, T., Shibata, N., Okumura, R., Kudome, T., Nishimura, O., Tarui, H., & Agata, K. (2010). Single-cell gene profiling of planarian stem cells using fluorescent activated cell sorting and its
“index sorting” function for stem cell research.
Development, Growth & Differentiation,
52(1), 131–144.
https://doi.org/10.1111/j.1440-169X.2009.01157.x
Huang, Y., & Sanguinetti, G. (2021). Uncertainty versus variability:
Bayesian methods for analysis of
scRNA-seq data.
Current Opinion in Systems Biology,
28, 100375.
https://doi.org/10.1016/j.coisb.2021.100375
Islam, S., Zeisel, A., Joost, S., La Manno, G., Zajac, P., Kasper, M., Lönnerberg, P., & Linnarsson, S. (2014). Quantitative single-cell
RNA-seq with unique molecular identifiers.
Nature Methods,
11(2), 163–166.
https://doi.org/10.1038/nmeth.2772
Jaitin, D. A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretsky, I., Mildner, A., Cohen, N., Jung, S., Tanay, A., & Amit, I. (2014). Massively
Parallel Single-Cell RNA-Seq for
Marker-Free Decomposition of
Tissues into
Cell Types.
Science,
343(6172), 776–779.
https://doi.org/10.1126/science.1247651
Jensen, K. B., & Darnell, R. B. (2008).
CLIP: Crosslinking and immunoprecipitation of in vivo
RNA targets of
RNA-binding proteins.
Methods in Molecular Biology (Clifton, N.J.),
488, 85–98.
https://doi.org/10.1007/978-1-60327-475-3_6
Kamme, F., Salunga, R., Yu, J., Tran, D.-T., Zhu, J., Luo, L., Bittner, A., Guo, H.-Q., Miller, N., Wan, J., & Erlander, M. (2003). Single-
Cell Microarray Analysis in
Hippocampus CA1:
Demonstration and
Validation of
Cellular Heterogeneity.
The Journal of Neuroscience,
23(9), 3607–3615.
https://doi.org/10.1523/JNEUROSCI.23-09-03607.2003
Kanno, J., Aisaki, K., Igarashi, K., Nakatsu, N., Ono, A., Kodama, Y., & Nagao, T. (2006). "
Per cell" normalization method for
mRNA measurement by quantitative
PCR and microarrays.
BMC Genomics,
7(1), 64.
https://doi.org/10.1186/1471-2164-7-64
Kazan, H., & Morris, Q. (2013).
RBPmotif: A web server for the discovery of sequence and structure preferences of
RNA-binding proteins.
Nucleic Acids Research,
41(Web Server issue), W180–W186.
https://doi.org/10.1093/nar/gkt463
Kebschull, J. M., Richman, E. B., Ringach, N., Friedmann, D., Albarran, E., Kolluru, S. S., Jones, R. C., Allen, W. E., Wang, Y., Cho, S. W., Zhou, H., Ding, J. B., Chang, H. Y., Deisseroth, K., Quake, S. R., & Luo, L. (2020). Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set.
Science,
370(6523), eabd5059.
https://doi.org/10.1126/science.abd5059
Keller, D., Verasztó, C., & Markram, H. (2023). Cell-type-specific densities in mouse somatosensory cortex derived from
scRNA-seq and in situ
RNA hybridization.
Frontiers in Neuroanatomy,
17, 1118170.
https://doi.org/10.3389/fnana.2023.1118170
Kiselev, V. Y., Andrews, T. S., & Hemberg, M. (2019). Challenges in unsupervised clustering of single-cell
RNA-seq data.
Nature Reviews Genetics,
20(5), 273–282.
https://doi.org/10.1038/s41576-018-0088-9
Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C., & Teichmann, S. A. (2015). The
Technology and
Biology of
Single-Cell RNA Sequencing.
Molecular Cell,
58(4), 610–620.
https://doi.org/10.1016/j.molcel.2015.04.005
Lall, S., Sinha, D., Bandyopadhyay, S., & Sengupta, D. (2018). Structure-
Aware Principal Component Analysis for
Single-Cell RNA-seq Data.
Journal of Computational Biology,
25(12), 1365–1373.
https://doi.org/10.1089/cmb.2018.0027
Lein, E., Borm, L. E., & Linnarsson, S. (2017). The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing.
Science,
358(6359), 64–69.
https://doi.org/10.1126/science.aan6827
Li, H., Horns, F., Wu, B., Xie, Q., Li, J., Li, T., Luginbuhl, D. J., Quake, S. R., & Luo, L. (2017). Classifying
Drosophila Olfactory Projection Neuron Subtypes by
Single-Cell RNA Sequencing.
Cell,
171(5), 1206–1220.e22.
https://doi.org/10.1016/j.cell.2017.10.019
Li, H., Janssens, J., De Waegeneer, M., Kolluru, S. S., Davie, K., Gardeux, V., Saelens, W., David, F. P. A., Brbić, M., Spanier, K., Leskovec, J., McLaughlin, C. N., Xie, Q., Jones, R. C., Brueckner, K., Shim, J., Tattikota, S. G., Schnorrer, F., Rust, K., … Zinzen, R. P. (2022). Fly
Cell Atlas:
A single-nucleus transcriptomic atlas of the adult fruit fly.
Science,
375(6584), eabk2432.
https://doi.org/10.1126/science.abk2432
Li, Y., Chen, S., Liu, W., Zhao, D., Gao, Y., Hu, S., Liu, H., Li, Y., Qu, L., & Liu, X. (2024). A full-body transcription factor expression atlas with completely resolved cell identities in
C. elegans.
Nature Communications,
15(1), 358.
https://doi.org/10.1038/s41467-023-42677-6
Lo, A. C., Houenou, L. J., & Oppenheim, R. W. (1995). Apoptosis in the
Nervous System:
Morphological Features,
Methods,
Pathology, and
Prevention.
Archives of Histology and Cytology,
58(2), 139–149.
https://doi.org/10.1679/aohc.58.139
Luecken, M. D., & Theis, F. J. (2019). Current best practices in single-cell
RNA-seq analysis: A tutorial.
Molecular Systems Biology,
15(6), e8746.
https://doi.org/10.15252/msb.20188746
Lytal, N., Ran, D., & An, L. (2020). Normalization
Methods on
Single-Cell RNA-seq Data:
An Empirical Survey.
Frontiers in Genetics,
11, 41.
https://doi.org/10.3389/fgene.2020.00041
Maynard, K. R., Collado-Torres, L., Weber, L. M., Uytingco, C., Barry, B. K., Williams, S. R., Catallini, J. L., Tran, M. N., Besich, Z., Tippani, M., Chew, J., Yin, Y., Kleinman, J. E., Hyde, T. M., Rao, N., Hicks, S. C., Martinowich, K., & Jaffe, A. E. (2021). Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex.
Nature Neuroscience,
24(3), 425–436.
https://doi.org/10.1038/s41593-020-00787-0
Michael Love, S. A. (2017).
DESeq2. [object Object].
https://doi.org/10.18129/B9.BIOC.DESEQ2
Michki, N. S., Li, Y., Sanjasaz, K., Zhao, Y., Shen, F. Y., Walker, L. A., Cao, W., Lee, C.-Y., & Cai, D. (2021). The molecular landscape of neural differentiation in the developing
Drosophila brain revealed by targeted
scRNA-seq and multi-informatic analysis.
Cell Reports,
35(4), 109039.
https://doi.org/10.1016/j.celrep.2021.109039
Mishina, Y., & Snider, T. N. (2014). Neural crest cell signaling pathways critical to cranial bone development and pathology.
Experimental Cell Research,
325(2), 138–147.
https://doi.org/10.1016/j.yexcr.2014.01.019
Nguyen, P.-K., & Cheng, L. Y. (2022). Non-autonomous regulation of neurogenesis by extrinsic cues: A
Drosophila perspective.
Oxford Open Neuroscience,
1, kvac004.
https://doi.org/10.1093/oons/kvac004
Olsen, T. K., & Baryawno, N. (2018). Introduction to
Single-
Cell RNA Sequencing.
Current Protocols in Molecular Biology,
122(1), e57.
https://doi.org/10.1002/cpmb.57
Oshlack, A., Robinson, M. D., & Young, M. D. (2010). From
RNA-seq reads to differential expression results.
Genome Biology,
11(12), 220.
https://doi.org/10.1186/gb-2010-11-12-220
Peng, H., Xie, P., Liu, L., Kuang, X., Wang, Y., Qu, L., Gong, H., Jiang, S., Li, A., Ruan, Z., Ding, L., Yao, Z., Chen, C., Chen, M., Daigle, T. L., Dalley, R., Ding, Z., Duan, Y., Feiner, A., … Zeng, H. (2021). Morphological diversity of single neurons in molecularly defined cell types.
Nature,
598(7879), 174–181.
https://doi.org/10.1038/s41586-021-03941-1
Pettit, J.-B., Tomer, R., Achim, K., Richardson, S., Azizi, L., & Marioni, J. (2014). Identifying
Cell Types from
Spatially Referenced Single-Cell Expression Datasets.
PLoS Computational Biology,
10(9), e1003824.
https://doi.org/10.1371/journal.pcbi.1003824
Robinson, M. D., & Oshlack, A. (2010). A scaling normalization method for differential expression analysis of
RNA-seq data.
Genome Biology,
11(3), R25.
https://doi.org/10.1186/gb-2010-11-3-r25
Russell, L. E., Dalgleish, H. W. P., Nutbrown, R., Gauld, O. M., Herrmann, D., Fişek, M., Packer, A. M., & Häusser, M. (2022). All-optical interrogation of neural circuits in behaving mice.
Nature Protocols,
17(7), 1579–1620.
https://doi.org/10.1038/s41596-022-00691-w
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F., & Regev, A. (2015). Spatial reconstruction of single-cell gene expression data.
Nature Biotechnology,
33(5), 495–502.
https://doi.org/10.1038/nbt.3192
Schäffner, E., Bosch-Queralt, M., Edgar, J. M., Lehning, M., Strauß, J., Fleischer, N., Kungl, T., Wieghofer, P., Berghoff, S. A., Reinert, T., Krueger, M., Morawski, M., Möbius, W., Barrantes-Freer, A., Stieler, J., Sun, T., Saher, G., Schwab, M. H., Wrede, C., … Stassart, R. M. (2023). Myelin insulation as a risk factor for axonal degeneration in autoimmune demyelinating disease.
Nature Neuroscience,
26(7), 1218–1228.
https://doi.org/10.1038/s41593-023-01366-9
Scheffer, L. K., Xu, C. S., Januszewski, M., Lu, Z., Takemura, S., Hayworth, K. J., Huang, G. B., Shinomiya, K., Maitlin-Shepard, J., Berg, S., Clements, J., Hubbard, P. M., Katz, W. T., Umayam, L., Zhao, T., Ackerman, D., Blakely, T., Bogovic, J., Dolafi, T., … Plaza, S. M. (2020). A connectome and analysis of the adult
Drosophila central brain.
eLife,
9, e57443.
https://doi.org/10.7554/eLife.57443
Schneider-Lunitz, V., Ruiz-Orera, J., Hubner, N., & van Heesch, S. (2021). Multifunctional
RNA-binding proteins influence
mRNA abundance and translational efficiency of distinct sets of target genes.
PLoS Computational Biology,
17(12), e1009658.
https://doi.org/10.1371/journal.pcbi.1009658
Schuurmans, C., & Guillemot, F. (2002). Molecular mechanisms underlying cell fate specification in the developing telencephalon.
Current Opinion in Neurobiology,
12(1), 26–34.
https://doi.org/10.1016/S0959-4388(02)00286-6
Shah, S., Lubeck, E., Zhou, W., & Cai, L. (2016). In
Situ Transcription Profiling of
Single Cells Reveals Spatial Organization of
Cells in the
Mouse Hippocampus.
Neuron,
92(2), 342–357.
https://doi.org/10.1016/j.neuron.2016.10.001
Sharon, N., Chawla, R., Mueller, J., Vanderhooft, J., Whitehorn, L. J., Rosenthal, B., Gürtler, M., Estanboulieh, R. R., Shvartsman, D., Gifford, D. K., Trapnell, C., & Melton, D. (2019). A
Peninsular Structure Coordinates Asynchronous Differentiation with
Morphogenesis to
Generate Pancreatic Islets.
Cell,
176(4), 790–804.e13.
https://doi.org/10.1016/j.cell.2018.12.003
Smajić, S., Prada-Medina, C. A., Landoulsi, Z., Ghelfi, J., Delcambre, S., Dietrich, C., Jarazo, J., Henck, J., Balachandran, S., Pachchek, S., Morris, C. M., Antony, P., Timmermann, B., Sauer, S., Pereira, S. L., Schwamborn, J. C., May, P., Grünewald, A., & Spielmann, M. (2022). Single-cell sequencing of human midbrain reveals glial activation and a
Parkinson-specific neuronal state.
Brain,
145(3), 964–978.
https://doi.org/10.1093/brain/awab446
Stegle, O., Teichmann, S. A., & Marioni, J. C. (2015). Computational and analytical challenges in single-cell transcriptomics.
Nature Reviews Genetics,
16(3), 133–145.
https://doi.org/10.1038/nrg3833
Stickels, R. R., Murray, E., Kumar, P., Li, J., Marshall, J. L., Di Bella, D. J., Arlotta, P., Macosko, E. Z., & Chen, F. (2021). Highly sensitive spatial transcriptomics at near-cellular resolution with
Slide-seqV2.
Nature Biotechnology,
39(3), 313–319.
https://doi.org/10.1038/s41587-020-0739-1
Svara, F., Förster, D., Kubo, F., Januszewski, M., Dal Maschio, M., Schubert, P. J., Kornfeld, J., Wanner, A. A., Laurell, E., Denk, W., & Baier, H. (2022). Automated synapse-level reconstruction of neural circuits in the larval zebrafish brain.
Nature Methods,
19(11), 1357–1366.
https://doi.org/10.1038/s41592-022-01621-0
Tang, F., Barbacioru, C., Bao, S., Lee, C., Nordman, E., Wang, X., Lao, K., & Surani, M. A. (2010). Tracing the
Derivation of
Embryonic Stem Cells from the
Inner Cell Mass by
Single-Cell RNA-Seq Analysis.
Cell Stem Cell,
6(5), 468–478.
https://doi.org/10.1016/j.stem.2010.03.015
Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B. B., Siddiqui, A., Lao, K., & Surani, M. A. (2009).
mRNA-Seq whole-transcriptome analysis of a single cell.
Nature Methods,
6(5), 377–382.
https://doi.org/10.1038/nmeth.1315
Tasic, B., Yao, Z., Graybuck, L. T., Smith, K. A., Nguyen, T. N., Bertagnolli, D., Goldy, J., Garren, E., Economo, M. N., Viswanathan, S., Penn, O., Bakken, T., Menon, V., Miller, J., Fong, O., Hirokawa, K. E., Lathia, K., Rimorin, C., Tieu, M., … Zeng, H. (2018). Shared and distinct transcriptomic cell types across neocortical areas.
Nature,
563(7729), 72–78.
https://doi.org/10.1038/s41586-018-0654-5
Taylor, S. R., Santpere, G., Reilly, M., Glenwinkel, L., Poff, A., McWhirter, R., Xu, C., Weinreb, A., Basavaraju, M., Cook, S. J., Barrett, A., Abrams, A., Vidal, B., Cros, C., Rafi, I., Sestan, N., Hammarlund, M., Hobert, O., & Miller, D. M. (2019).
Expression profiling of the mature C. Elegans nervous system by single-cell RNA-Sequencing.
https://doi.org/10.1101/737577
Thompson, M., Bixby, R., Dalton, R., Vandenburg, A., Calarco, J. A., & Norris, A. D. (2019). Splicing in a single neuron is coordinately controlled by
RNA binding proteins and transcription factors.
eLife,
8, e46726.
https://doi.org/10.7554/eLife.46726
Tosches, M. A., Yamawaki, T. M., Naumann, R. K., Jacobi, A. A., Tushev, G., & Laurent, G. (2018). Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles.
Science,
360(6391), 881–888.
https://doi.org/10.1126/science.aar4237
Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N. J., Livak, K. J., Mikkelsen, T. S., & Rinn, J. L. (2014). The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.
Nature Biotechnology,
32(4), 381–386.
https://doi.org/10.1038/nbt.2859
Treutlein, B., Brownfield, D. G., Wu, A. R., Neff, N. F., Mantalas, G. L., Espinoza, F. H., Desai, T. J., Krasnow, M. A., & Quake, S. R. (2014). Reconstructing lineage hierarchies of the distal lung epithelium using single-cell
RNA-seq.
Nature,
509(7500), 371–375.
https://doi.org/10.1038/nature13173
Van Battum, E. Y., Brignani, S., & Pasterkamp, R. J. (2015). Axon guidance proteins in neurological disorders.
The Lancet Neurology,
14(5), 532–546.
https://doi.org/10.1016/S1474-4422(14)70257-1
Wang, X., He, Y., Zhang, Q., Ren, X., & Zhang, Z. (2021). Direct
Comparative Analyses of
10X Genomics Chromium and
Smart-seq2.
Genomics, Proteomics & Bioinformatics,
19(2), 253–266.
https://doi.org/10.1016/j.gpb.2020.02.005
Xing, Y., Zan, C., & Liu, L. (2023). Recent advances in understanding neuronal diversity and neural circuit complexity across different brain regions using single-cell sequencing.
Frontiers in Neural Circuits,
17, 1007755.
https://doi.org/10.3389/fncir.2023.1007755
Yang, Y., Shi, X., Liu, W., Zhou, Q., Chan Lau, M., Chun Tatt Lim, J., Sun, L., Ng, C. C. Y., Yeong, J., & Liu, J. (2022).
SC-MEB: Spatial clustering with hidden
Markov random field using empirical
Bayes.
Briefings in Bioinformatics,
23(1), bbab466.
https://doi.org/10.1093/bib/bbab466
Yao, S., Wang, Q., Hirokawa, K. E., Ouellette, B., Ahmed, R., Bomben, J., Brouner, K., Casal, L., Caldejon, S., Cho, A., Dotson, N. I., Daigle, T. L., Egdorf, T., Enstrom, R., Gary, A., Gelfand, E., Gorham, M., Griffin, F., Gu, H., … Zeng, H. (2023). A whole-brain monosynaptic input connectome to neuron classes in mouse visual cortex.
Nature Neuroscience,
26(2), 350–364.
https://doi.org/10.1038/s41593-022-01219-x
Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: Past, present, and future.
Stem Cell Research & Therapy,
10(1), 68.
https://doi.org/10.1186/s13287-019-1165-5
Zeisel, A., Muñoz-Manchado, A. B., Codeluppi, S., Lönnerberg, P., La Manno, G., Juréus, A., Marques, S., Munguba, H., He, L., Betsholtz, C., Rolny, C., Castelo-Branco, G., Hjerling-Leffler, J., & Linnarsson, S. (2015). Cell types in the mouse cortex and hippocampus revealed by single-cell
RNA-seq.
Science,
347(6226), 1138–1142.
https://doi.org/10.1126/science.aaa1934
Zhao, P., Mondal, S., Martin, C., DuPlissis, A., Chizari, S., Ma, K.-Y., Maiya, R., Messing, R. O., Jiang, N., & Ben-Yakar, A. (2023). Femtosecond laser microdissection for isolation of regenerating
C. Elegans neurons for single-cell
RNA sequencing.
Nature Methods,
20(4), 590–599.
https://doi.org/10.1038/s41592-023-01804-3
Zhong, C., Tian, T., & Wei, Z. (2023). Hidden
Markov random field models for cell-type assignment of spatially resolved transcriptomics.
Bioinformatics,
39(11), btad641.
https://doi.org/10.1093/bioinformatics/btad641
Zhou, Q., Liu, M., Xia, X., Gong, T., Feng, J., Liu, W., Liu, Y., Zhen, B., Wang, Y., Ding, C., & Qin, J. (2017). A mouse tissue transcription factor atlas.
Nature Communications,
8(1), 15089.
https://doi.org/10.1038/ncomms15089
Ziegenhain, C., Hendriks, G.-J., Hagemann-Jensen, M., & Sandberg, R. (2022). Molecular spikes: A gold standard for single-cell
RNA counting.
Nature Methods,
19(5), 560–566.
https://doi.org/10.1038/s41592-022-01446-x